Durable response of glioblastoma to adjuvant therapy consisting of temozolomide and a weekly dose of AMD3100 (plerixafor), a CXCR4 inhibitor, together with lapatinib, metformin and niacinamide
نویسندگان
چکیده
UNLABELLED Glioblastoma multiforme (GBM) is a CNS (central nervous system) malignancy with a low cure rate. Median time to progression after standard treatment is 7 months and median overall survival is 15 months [1]. Post-treatment vasculogenesis promoted by recruitment of bone marrow derived cells (BMDCs, CD11b+ myelomonocytes) is one of main mechanisms of GBM resistance to initial chemoradiotherapy treatment [2]. Local secretion of SDF-1, cognate ligand of BMDCs CXCR4 receptors attracts BMDCs to the post-radiation tumor site.[3]. This SDF-1 hypoxia-dependent effect can be blocked by AMD3100 (plerixafor) [4]. We report a GBM case treated after chemo- radiotherapy with plerixafor and a combination of an mTOR, a Sirt1 and an EGFRvIII inhibitor. After one year temozolomide and the EGFRvIII inhibitor were stopped. Plerixafor, and the MTOR and Sirt-1 inhibitors were continued. He is in clinical and radiologic remission 30 months from the initiation of his adjuvant treatment. To our knowledge, this is the first report of a patient treated for over two years with a CXCR4 inhibitor (plerixafor), as part of his adjuvant treatment. We believe there is sufficient experimental evidence to consider AMD3100 (plerixafor) part of the adjuvant treatment of GBM. SIGNIFICANCE The adjuvant inhibition of GBM vasculogenesis(a process different from local angiogenesis) by specifically blocking the migration of BMDCs to the primary tumor site with inhibitors of the CXCR4/SDF-1 axis represents a potential novel therapeutic approach to GBM. There is significant pre-clinical evidence and validation for its use as demonstrated in a patient derived tumor xenograft model of GBM. Together with other specific anti-tumoral therapies, the active inhibition of vasculogenesis in the adjuvant treatment of GBM is deserving of further exploration.
منابع مشابه
Getting more out of radiation therapy in glioblastoma.
While radiation therapy has been standard of care for newly diagnosed glioblastoma for several decades, it only delays but does not prevent recurrence of these aggressive tumors. Therefore, the identification and targeting of factors allowing glioblastoma cells to escape the deleterious effects of radiation is essential to allow this therapeutic modality to fulfill its potential. In an elegant ...
متن کاملCXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas.
PURPOSE The chemokine receptor CXCR4 is expressed in many different cancers. In malignant brain tumors, CXCR4 signaling has been implicated in tumor growth, survival, and migration, and pharmacologic inhibition of CXCR4 results in decreased tumor growth in preclinical models. To understand how CXCR4 inhibitors may be incorporated into clinical therapy, we examined determinants of responsiveness...
متن کاملThe CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome.
WHIM syndrome is a rare congenital immunodeficiency disorder characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (neutropenia because of impaired egress from the BM); most patients also have severe panleukopenia. Because WHIM syndrome is caused by mutations in the chemokine receptor CXCR4 that result in increased agonist-dependent signaling, we hypothesized that the CXC...
متن کاملPreparation and preliminary biological evaluation of [153Sm] samarium AMD3100; towards a possible therapeutic chemokine receptor CXCR4 targeting complex
Introduction: In continuation of recent development of possible C-X-C chemokine receptor type 4 (CXCR4) imaging agents, we report the development of a possible CXCR4 targeted therapy agent. Methods: [153Sm]labeled 1,1′-[1,4-phenylenebis(methylene)] bis-1,4,8,11-tetraazacyclo -tetradecane ([153Sm]-AMD3100) was prepared using [153Sm]SmCl3 and AMD-3100 ...
متن کاملIn Vitro Radiosensitizing Effects of Temozolomide on U87MG Cell Lines of Human Glioblastoma Multiforme
Background: Glioma is the most common primary brain tumor with poor prognosis. Temozolomide (TMZ) has been used with irradiation (IR) to treat gliomas. The aim of the present study was to evaluate the cytotoxic and radiosensitizing effect of TMZ when combined with high-dose and high-dose rate of gamma irradiation in vitro.Methods: Two ‘U87MG’ cell lines and skin fibroblast were cultured and ass...
متن کامل